

AVR446: Linear speed control of stepper motor

Features
• Linear speed control of stepper motor

- Control of acceleration, deceleration, max speed and number of steps to move
• Driven by one timer interrupt
• Full- or half-stepping driving mode
• Supports all AVR® devices with 16bit timer
• Demo application for ATmega48 running on 3,68MHz, with serial interface on 19200

8/N/1.

1 Introduction
This application note describes how to implement an exact linear speed controller
for stepper motors. The stepper motor is an electromagnetic device that converts
digital pulses into mechanical shaft rotation. Many advantages are achieved using
this kind of motors, such as higher simplicity, since no brushes or contacts are
present, low cost, high reliability, high torque at low speeds, and high accuracy of
motion. Many systems with stepper motors need to control the acceleration/
deceleration when changing the speed. This application note presents a driver with
a demo application, capable of controlling acceleration as well as position and
speed.

This linear speed controller is based on an algorithm presented in ‘Embedded
Systems Programming’ January 2005, ‘Generate stepper-motor speed profiles in
real time’ an article by D. Austin. This algorithm allows parameterization and
calculation in real time, using only simple fixed-point arithmetic operations and no
data tables.

Figure 1-1. Stepper motors

8-bit
Microcontrollers

Application Note

Rev. 8017A-AVR-06/06

2 AVR446
8017A-AVR-06/06

2 Theory

2.1 Stepper motor
This application note covers the theory about linear speed ramp stepper motor control
as well as the realization of the controller itself. It is assumed that the reader is
familiar with basic stepper motor operation, but a summary of the most relevant topics
will be given. Further details about stepper motors can be found in D. W. Jones,
Control of Stepper Motors.

2.1.1 Bipolar vs. Unipolar stepper motors

The two common types of stepper motors are the bipolar motor and the unipolar
motor. The bipolar and unipolar motors are similar, except that the unipolar has a
center tap on each winding as shown in Figure 2-1.

Figure 2-1. Bipolar and Unipolar stepper motors

A1
A2
B1

B2

A1A2

B1

B2

The bipolar motor needs current to be driven in both directions through the windings,
and a full bridge driver is needed as shown in Figure 2-2. The center tap on the
unipolar motor allows a simpler driving circuit, also shown in Figure 2-2, limiting the
current flow to one direction. The main drawback with the unipolar motor is the limited
capability to energize all windings at any time, resulting in a lower torque compared to
the bipolar motor. The unipolar stepper motor can be used as a bipolar motor by
disconnecting the center tap.

Figure 2-2. Bipolar and Unipolar drivers with MOS transistors

1 2 211 2
21

2.1.2 Full vs. half stepping

Stepper motors used in full-stepping mode powers one winding at a time. This way,
four different settings (positions) is possible, shown in the ‘Full-stepping’ row of Table
2-1. By powering both windings simultaneous, the stepper motor is trapped between
the positions obtained when full-stepping, also known as half-stepping. This gives
eight positions as shown in the ‘Half-stepping’ row of Table 2-1. When powering both
windings, the torque is approximately 1.4 times higher than when powering only one
winding, but at the cost of twice the power consumption. The electrical cycle parts in

 AVR446

 3

8017A-AVR-06/06

Table 2-1are all part of one electrical cycle. One mechanical cycle (revolution) usually
consists of several electrical cycles.

Table 2-1. Full-stepping and half-stepping
Electric polarity Winding A + + - - - +

 Winding B + + + - - -

Electrical cycle part Full-stepping 1 2 3 4
 Half-stepping 1 2 3 4 5 6 7 8

2.1.3 Speed properties

One drawback with the stepper motor is the limited torque capabilities at high speeds,
since the torque of a stepper motor will decrease with increasing speed. The torque
also drops at the resonant speed, as shown in Figure 2-3. The resonant speed will
depend on the driving scheme of the stepper motor and the load.

Figure 2-3. Torque vs. speed
Τ

ω

Resonant
Speed

Maximum torque is achieved at low speeds, and this is an advantageous in many
applications.

2.2 Fundamental stepper motor equations
To create rotational motion in a stepper motor, the current thru the windings must
change in the correct order. This is obtained using a driver that gives the correct
output sequence when subjected to a pulse (‘stepper motor pulse’) and a direction
signal.

To rotate the stepper motor at a constant speed, pulses must be generated at a
steady rate, shown in Figure 2-4.

Figure 2-4. Stepper motor pulses

0t 2t
ttct 0=δ ttc1

t1t

Step pulse

A counter generates these pulses, running at the frequency tf [Hz].

The delay tδ programmed by the counter c is

t
t f

cctt ==δ [s]

4 AVR446
8017A-AVR-06/06

The motor step angle α , position θ , and speed ω are given by

spr

πα 2
= [rad] αθ n= [rad]

tδ
αω = [rad/sec]

where spr is the number of steps per round, n is the number of steps, and

1 rad/sec = 9,55 rpm

2.3 Linear speed ramp
To start and stop the stepper motor in a smooth way, control of the acceleration and
deceleration is needed. Figure 2-5 shows the relation between acceleration, speed
and position. Using a constant acceleration/deceleration gives a linear speed profile.

Figure 2-5. Acceleration ()ω& , speed ()ω and position ()θ

ω&

t

ω

t
θ

t

The time delay tδ between the stepper motor pulses controls the speed. These time
delays must be calculated in order to make the speed of the stepper motor follow the
speed ramp as closely as possible.

Discrete steps control the stepper motor motion, and the resolution of the time delay
between these steps is given by the frequency of the timer.

 AVR446

 5

8017A-AVR-06/06

Figure 2-6. Speed profile vs. stepper motor pulses/speed

0t 2t 3t
ttct 0=δ ttc1 ttc2

desired speed slope

ω

t

t

θ

1t

2.3.1 Exact calculations of the inter-step delay

The first counter delay c0 as well as succeeding counter delays cn, are given by (see
appendix for details):

ω
α
&

21
0

tt
c = ()nnccn −+= 10

The computational power of a microcontroller is limited, and calculating two square
roots is time consuming. Therefore an approximation with less computational
complexity is considered.

The counter value at the time n, using Taylor series approximation for the inter-step
delay (see appendix for details) is given by:

14
2 1

1 +
−= −

− n
c

cc n
nn

This calculation is much faster than the double square root, but introduces an error of
0.44 at n =1. A way to compensate for this error is by multiplying 0c with 0,676.

2.3.2 Change in acceleration

As shown in the appendix, the acceleration is given by 0c and n . If a change in
acceleration (or deceleration) is done, a new n must be calculated.

The time tn and n as a function of the motor acceleration, speed and step angle are
given by

6 AVR446
8017A-AVR-06/06

ω
ω
&
n

nt =
α

ω
2

2
nt

n
&

=

Merging these equation gives the relationship

α
ωω
2

2

=&n

This shows that the number of steps needed to reach a given speed is inversely
proportional to the acceleration: 2211 ωω && nn =

This means that changing the acceleration from 1ω& to 2ω& is done by changing n .
This is shown in Figure 2-7

Figure 2-7. Up/down speed ramp
ω

t

1ω& 2ω&

1n 2n

Moving a given number of steps, deceleration must start at the right step to end at
zero speed. The following equation is used to find 1n :

()
()21

212
1 ωω

ω
&&

&

+
+

=
nnn

 AVR446

 7

8017A-AVR-06/06

3 Implementation
A working implementation written in C is included with this application note. Full
documentation of the source code and compilation information is found by opening
the ‘readme.html’ file included with the source code.

The demo application demonstrates linear speed control of a stepper motor. The user
can control the stepper motor speed profile by issuing different commands using the
serial port, and the AVR will drive the connected stepper motor accordingly.

The demo application is divided in three major blocks, as shown in the block diagram
in Figure 3-1. There is one file for each block and also a file for UART routines used
by the main routine.

Figure 3-1. Block diagram of demo application
HW

Menu &
Cmd-IF

Speed
controller

Stepper
Driver

Move()RS232 StepCounter()
A1
A2
B1
B2

main.c speed_cntr.c sm_driver.c

 M
UART

RX & TX

uart.c

main.c has a menu and a command interface, giving the user control of the stepper
motor by a terminal connected to the serial line.

speed_cntr.c calculates the needed data and generates step pulses to make the
stepper motor follow the desired speed profile.

sm_driver.c counts the steps and outputs the correct signals to control the stepper
motor.

To control the stepper motor, four parameters describing a speed profile are needed.
The speed profile starts at zero speed and accelerates up to the given speed. This
speed is held constant until deceleration starts. Finally the motor decelerates to zero
speed at the given number of steps. A speed profile is shown in Figure 3-2.

Figure 3-2. Speed profile

ac
ce

l

ω

t

speed

decel

step

The parameters describing the speed profile is:

step - Number of steps to move.

accel - Acceleration to use.

decel - Deceleration to use.

speed - (Maximum) speed to use.

8 AVR446
8017A-AVR-06/06

3.1 Menu and command interface
To use the demo application the user must connect a terminal to the serial port of the
AVR. The UART setting is 19200 baud, 8 data bit, none parity and 1 stop bits. Any
terminal emulation program should work. Using the terminal the user can give
different commands to control the stepper motor and get information back from the
demo application.

The UART RX interrupt routine (found in uart.c) stores received characters in the
receiver buffer and handles backspace. When <enter> (ascii code 13) is received the
main routine reads the buffer and executes the given command.

When starting, and on the ‘?’ command, this help screen is shown:

--

Atmel AVR446 - Linear speed control of stepper motor

? - Show help

a [data] - Set acceleration (range: 71 - 32000)

d [data] - Set deceleration (range: 71 - 32000)

s [data] - Set speed (range: 12 - motor limit)

m [data] - Move [data] steps (range: -64000 - 64000)

move [steps] [accel] [decel] [speed]

 - Move with all parameters given

<enter> - Repeat last move

 acc/dec data given in 0.01*rad/sec^2 (100 = 1 rad/sec^2)

 speed data given in 0.01*rad/sec (100 = 1 rad/sec)

--

After the menu is shown or a command is executed the info line is shown:

 Motor pos: 0 a:4000 d:4000 s:2000 m:400

The demo application gives the current motor position, acceleration, deceleration, and
speed settings, as well as the number of steps to move.

There are three different ways to make the stepper motor move:
• Pressing <enter>

The stepper motor runs as specified by the settings given by the application.
• m [data]

The stepper motor moves [data] steps, with the given settings.
• move [steps] [accel] [decel] [speed]

The application moves [steps] steps, with settings [accel] [decel] [speed].

When the stepper motor starts running ‘Running...’ will show. As long as the motor
is running, new commands are blocked. After it has stopped ‘OK’ shows and new
commands are accepted.

 AVR446

 9

8017A-AVR-06/06

3.2 Speed controller
The speed controller calculates and generates the speed profile. The block diagram
for the speed controller is shown in Figure 3-3. To run the stepper motor, the speed
controller is set up by calling the function Move().
Figure 3-3. Block diagram of speed controller

Setup
calculations

Timer Interrupt

Move()

Step_Counter()

struct
SpeedRampData

STOP

ACCEL

RUN

DECEL

The function Move() first calculates all the parameters needed and stores them in the
speed ramp data struct, then it enables the timer interrupt. The timer generates
interrupts according to the desired speed ramp, and calls the function Step_Counter()
on each interrupt to move the stepper motor.

3.2.1 Setup calculations

In the demo application parameters for the speed profile is calculated for every
command, and a small delay from the call is made to the stepper motor starts moving
is introduced. In a real application this may not be necessary if only a limited change
in speed profile is needed. In this case the parameters may be calculated in advance
and setup calculations skipped.

Use of floating point arithmetic is avoided to make the code fast, therefore scaling of
the variables is important to keep the accuracy. Precalculated compiler constants are
also used to simplify the arithmetic and can be found in the smdriver.h header file:

Find speed:
100⋅= tfA_T_x100 α

speed
A_T_x100cdelaymin ==_

Find acceleration:

100/676.0148__1 tfFREQT =
010000000002_ ⋅= αSQA

100/ _ 148__1_ 0 accel
SQAFREQTcdelaystep ==

There are two different scenarios for calculating the speed profile:

1. Acceleration continues until the desired speed is reached, or

2. Deceleration starts before desired speed is reached.

The scenario depends on all four variables describing the speed profile.

10 AVR446
8017A-AVR-06/06

3.2.1.1 Acceleration continues until desired speed is reached

In Figure 3-4 a speed ramp where the desired speed is reached before deceleration
starts is shown.

Figure 3-4. Speed ramp limited by desired speed value

ac
ce

l

ω

t

speed

decel

decel_val

step
m

ax
_s

_l
im

ac
ce

l_
lim

• max_s_lim is the number of steps needed to accelerate to the desired speed.

1002
lim__

2

⋅⋅
==

accel
speednsmax

α
• accel_lim is the number of steps before deceleration starts (disregarding desired

speed).

decelaccel
decelstepnaccel

+
⋅

== 1lim_

If lim_lim__ accelsmax < the acceleration is limited by reaching desired speed.

The deceleration depends on this, and in this case decal_val is found by:

decel
accelmax_s_limdecel_val ⋅−=

3.2.1.2 Deceleration starts before desired speed is reached

In Figure 3-5 a speed ramp where deceleration must start before the desired speed is
reached is shown.

Figure 3-5. Speed ramp with deceleration start before desired speed reached
ω

t

speed

ac
ce

l decel

decel_val

step

ac
ce

l_
lim

m
ax

_s
_l

im

If lim_lim__ accelsmax > the acceleration is limited by deceleration start,
decal_val is then found by:

 AVR446

 11

8017A-AVR-06/06

()accel_limstepdecal_val −−=

3.2.2 Timer interrupt

The timer interrupt generates the ‘step pulses’ (calls the function StepCounter()) and
is only running when the stepper motor is moving. The timer interrupt will operate in
four different states according to the speed profile, shown in Figure 3-6.

Figure 3-6. Operating states for different speed profile parts
ω

trunaccel decelstop stop

This behavior is realized with a state machine in the timer interrupt, shown in Figure
3-7.

Figure 3-7. State machine for timer interrupt

move >1

move =1

max speed

decelerate

decelerate

end

STOP

DECEL ACCEL

RUN

When the application starts or when the stepper motor is stopped the state-machine
remains in the state STOP. When setup calculations are done, a new state is set and
the timer interrupt is enabled. When moving more than one step the state-machine
goes to ACCEL. If moving only 1 step, the state is changed to DECEL.

When the state is changed to ACCEL, the application accelerates the stepper motor
until either

 the desired speed is reached and the state is changed to RUN, or

 deceleration must start, changing the state to DECEL.

When the state is set to RUN, the stepper motor is kept at constant speed until
deceleration must start, then the state is changed to DECEL.

It will stay in DECEL and decelerate until the speed reaches zero desired number of
steps. The state is then changed to STOP.

12 AVR446
8017A-AVR-06/06

3.2.2.1 Calculations and counters

For each step during acceleration and deceleration a new time delay must be
calculated. This calculation includes a division giving a remainder, and to improve
accuracy this remainder is kept and included in the next calculation.

1_4
_2___

+⋅
+⋅

−=
countaccel

restdelaystepdelaystepdelaystepnew

() ()()1_4mod_2_ +⋅+⋅= countaccelrestdelaysteprestnew

To keep track of the position and when to change state some counting variables is
needed. In Figure 3-8 the use of these are illustrated.

Figure 3-8. Counting variables in time delay

acce
l

ω

t

decel

decel_start

step_count

accel_count accel_count
=0

=decel_val

=0

accel_count = 0

run

• step_count counts steps, starting at zero when ACCEL starts and have the same

value as the commanded steps after DECEL is finished.
• accel_count is used to control the acceleration/deceleration. In ACCEL it starts at

zero and is increased each step until ACCEL ends. When DECEL starts it is set to
decel_val, which is negative, and increased each step. When it reaches zero the
move is finished, and state set to STOP.

• decel_start tells when deceleration starts. When step_count is equal to
decel_start state is set to DECEL.

3.3 Stepper motor driver
The stepper motor driver generates the correct sequence of signals to move the
stepper motor in the commanded direction. Block schematic for the stepper motor
driver is shown in Figure 3-9.

Figure 3-9. Block schematic stepper motor driver

Step Counter StepTab

A1
A2

B1
B2

Step_Counter()

The step counter increments or decrements every time the function Step_Counter() is
called. When using fullsteps, the counter value goes from 0 to 3, when using
halfsteps, the value goes from 0 to 7. This value equals the different position in one
electrical cycle in the stepper motor. The step counter value is used as an index for
the step table, and correct signals is given to the stepper motor driver.

 AVR446

 13

8017A-AVR-06/06

3.4 Code size and speed
The complete demo code uses 4k of code memory, the speed controller and stepper
motor driver uses 1,5k of this. Removing setup calculations and using precalculated
parameters will reduce the code size further.

When calling Move(), setup calculations is done before the timer interrupt is started.
This gives a delay of approximately 1,5ms from the call is made to the stepper motor
starts. The timer interrupt performs calculations during acceleration and deceleration
and approximately 200us are used in one timer interrupt. When running at constant
speed less time is need and approximately 35us is sufficient. The maximum output
speed is then limited by acceleration/deceleration calculations. For a stepper motor
with 400 steps per round maximum output speed is:

rpm) 750(rad/sec 5,78
400us200

2
max ==

⋅
=

πω

When implementing this code in other applications, other interrupts must be taken in
consideration. If the timer interrupt for the stepper motor is blocked by another ISR,
this will make the stepper motor speed vary (not constant acceleration). It might not
be critical in the given application, but making the code as robust and deterministic as
possible is always a good thing.

4 Literature references
D. Austin, Generate stepper-motor speed profiles in real time, article in Embedded
Systems Programming’ January 2005.
http://www.embedded.com//showArticle.jhtml?articleID=56800129

D. W. Jones, Control of Stepper Motors, sections 5.2.10, 10.8, 10.9 and 10.10 of the
Handbook of Small Electric Motors edited by W. H. Yeadon and A. W. Yeadon,
McGraw-Hill, 2001. http://www.cs.uiowa.edu/~jones/step/

http://www.embedded.com//showArticle.jhtml?articleID=56800129
http://www.cs.uiowa.edu/~jones/step/

14 AVR446
8017A-AVR-06/06

5 Appendix

5.1 Counter delay
The speed at a given time is:

() tdt
t

ωτωω
τ

&& == ∫
=0

The position is given by:

() () αωττωθ
τ

ntdt
t

=== ∫
=

2

0 2
1
&

The n’th step pulse at the shaft angle θ = nα is:

ω
α
&

ntn
2

=

and the time delay between two steps is:

()nntttc nntn −+=−= + 12
1 ω

α
&

Finally the expression for the counter delay is found:

()nn
t

c
t

n −+= 121
ω
α
&

This leads to the expressions for the first and the n’th counter delay:

ω
α
&

21
0

tt
c = ()nnccn −+= 10

5.2 Inter-step delay
Using the Taylor series approximation

⎟
⎠
⎞

⎜
⎝
⎛+−±=± 32

1
8

1
2
1111

n
O

nnn

leads to

()
() 14

14
1

8
1

2
111

11
8
1

2
11

1
1

32

32

0

0

1 +
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+−−−

−⎟
⎠
⎞

⎜
⎝
⎛+−+

=
−−

−+
=

− n
n

n
O

nn

n
O

nn
nnc

nnc
c
c
n

n

Finally, the expression for the counter delay can be approximated as:

14
2 1

1 +
−= −

− n
c

cc n
nn

8017A-AVR-06/06

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2006 Atmel Corporation. All rights reserved. ATMEL®, logo and combinations thereof, Everywhere You Are®, AVR®, and others are the
registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Theory
	2.1 Stepper motor
	2.1.1 Bipolar vs. Unipolar stepper motors
	2.1.2 Full vs. half stepping
	2.1.3 Speed properties

	2.2 Fundamental stepper motor equations
	2.3 Linear speed ramp
	2.3.1 Exact calculations of the inter-step delay
	2.3.2 Change in acceleration

	3 Implementation
	3.1 Menu and command interface
	3.2 Speed controller
	3.2.1 Setup calculations
	3.2.1.1 Acceleration continues until desired speed is reached
	3.2.1.2 Deceleration starts before desired speed is reached

	3.2.2 Timer interrupt
	3.2.2.1 Calculations and counters

	3.3 Stepper motor driver
	3.4 Code size and speed

	4 Literature references
	5 Appendix
	5.1 Counter delay
	5.2 Inter-step delay

