/** ****************************************************************************** * @file stm32f10x_rcc.c * @author MCD Application Team * @version V3.5.0 * @date 11-March-2011 * @brief This file provides all the RCC firmware functions. ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * *

© COPYRIGHT 2011 STMicroelectronics

****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f10x_rcc.h" /** @addtogroup STM32F10x_StdPeriph_Driver * @{ */ /** @defgroup RCC * @brief RCC driver modules * @{ */ /** @defgroup RCC_Private_TypesDefinitions * @{ */ /** * @} */ /** @defgroup RCC_Private_Defines * @{ */ /* ------------ RCC registers bit address in the alias region ----------- */ #define RCC_OFFSET (RCC_BASE - PERIPH_BASE) /* --- CR Register ---*/ /* Alias word address of HSION bit */ #define CR_OFFSET (RCC_OFFSET + 0x00) #define HSION_BitNumber 0x00 #define CR_HSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4)) /* Alias word address of PLLON bit */ #define PLLON_BitNumber 0x18 #define CR_PLLON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4)) #ifdef STM32F10X_CL /* Alias word address of PLL2ON bit */ #define PLL2ON_BitNumber 0x1A #define CR_PLL2ON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLL2ON_BitNumber * 4)) /* Alias word address of PLL3ON bit */ #define PLL3ON_BitNumber 0x1C #define CR_PLL3ON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLL3ON_BitNumber * 4)) #endif /* STM32F10X_CL */ /* Alias word address of CSSON bit */ #define CSSON_BitNumber 0x13 #define CR_CSSON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4)) /* --- CFGR Register ---*/ /* Alias word address of USBPRE bit */ #define CFGR_OFFSET (RCC_OFFSET + 0x04) #ifndef STM32F10X_CL #define USBPRE_BitNumber 0x16 #define CFGR_USBPRE_BB (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (USBPRE_BitNumber * 4)) #else #define OTGFSPRE_BitNumber 0x16 #define CFGR_OTGFSPRE_BB (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (OTGFSPRE_BitNumber * 4)) #endif /* STM32F10X_CL */ /* --- BDCR Register ---*/ /* Alias word address of RTCEN bit */ #define BDCR_OFFSET (RCC_OFFSET + 0x20) #define RTCEN_BitNumber 0x0F #define BDCR_RTCEN_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (RTCEN_BitNumber * 4)) /* Alias word address of BDRST bit */ #define BDRST_BitNumber 0x10 #define BDCR_BDRST_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (BDRST_BitNumber * 4)) /* --- CSR Register ---*/ /* Alias word address of LSION bit */ #define CSR_OFFSET (RCC_OFFSET + 0x24) #define LSION_BitNumber 0x00 #define CSR_LSION_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4)) #ifdef STM32F10X_CL /* --- CFGR2 Register ---*/ /* Alias word address of I2S2SRC bit */ #define CFGR2_OFFSET (RCC_OFFSET + 0x2C) #define I2S2SRC_BitNumber 0x11 #define CFGR2_I2S2SRC_BB (PERIPH_BB_BASE + (CFGR2_OFFSET * 32) + (I2S2SRC_BitNumber * 4)) /* Alias word address of I2S3SRC bit */ #define I2S3SRC_BitNumber 0x12 #define CFGR2_I2S3SRC_BB (PERIPH_BB_BASE + (CFGR2_OFFSET * 32) + (I2S3SRC_BitNumber * 4)) #endif /* STM32F10X_CL */ /* ---------------------- RCC registers bit mask ------------------------ */ /* CR register bit mask */ #define CR_HSEBYP_Reset ((uint32_t)0xFFFBFFFF) #define CR_HSEBYP_Set ((uint32_t)0x00040000) #define CR_HSEON_Reset ((uint32_t)0xFFFEFFFF) #define CR_HSEON_Set ((uint32_t)0x00010000) #define CR_HSITRIM_Mask ((uint32_t)0xFFFFFF07) /* CFGR register bit mask */ #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) || defined (STM32F10X_CL) #define CFGR_PLL_Mask ((uint32_t)0xFFC2FFFF) #else #define CFGR_PLL_Mask ((uint32_t)0xFFC0FFFF) #endif /* STM32F10X_CL */ #define CFGR_PLLMull_Mask ((uint32_t)0x003C0000) #define CFGR_PLLSRC_Mask ((uint32_t)0x00010000) #define CFGR_PLLXTPRE_Mask ((uint32_t)0x00020000) #define CFGR_SWS_Mask ((uint32_t)0x0000000C) #define CFGR_SW_Mask ((uint32_t)0xFFFFFFFC) #define CFGR_HPRE_Reset_Mask ((uint32_t)0xFFFFFF0F) #define CFGR_HPRE_Set_Mask ((uint32_t)0x000000F0) #define CFGR_PPRE1_Reset_Mask ((uint32_t)0xFFFFF8FF) #define CFGR_PPRE1_Set_Mask ((uint32_t)0x00000700) #define CFGR_PPRE2_Reset_Mask ((uint32_t)0xFFFFC7FF) #define CFGR_PPRE2_Set_Mask ((uint32_t)0x00003800) #define CFGR_ADCPRE_Reset_Mask ((uint32_t)0xFFFF3FFF) #define CFGR_ADCPRE_Set_Mask ((uint32_t)0x0000C000) /* CSR register bit mask */ #define CSR_RMVF_Set ((uint32_t)0x01000000) #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) || defined (STM32F10X_CL) /* CFGR2 register bit mask */ #define CFGR2_PREDIV1SRC ((uint32_t)0x00010000) #define CFGR2_PREDIV1 ((uint32_t)0x0000000F) #endif #ifdef STM32F10X_CL #define CFGR2_PREDIV2 ((uint32_t)0x000000F0) #define CFGR2_PLL2MUL ((uint32_t)0x00000F00) #define CFGR2_PLL3MUL ((uint32_t)0x0000F000) #endif /* STM32F10X_CL */ /* RCC Flag Mask */ #define FLAG_Mask ((uint8_t)0x1F) /* CIR register byte 2 (Bits[15:8]) base address */ #define CIR_BYTE2_ADDRESS ((uint32_t)0x40021009) /* CIR register byte 3 (Bits[23:16]) base address */ #define CIR_BYTE3_ADDRESS ((uint32_t)0x4002100A) /* CFGR register byte 4 (Bits[31:24]) base address */ #define CFGR_BYTE4_ADDRESS ((uint32_t)0x40021007) /* BDCR register base address */ #define BDCR_ADDRESS (PERIPH_BASE + BDCR_OFFSET) /** * @} */ /** @defgroup RCC_Private_Macros * @{ */ /** * @} */ /** @defgroup RCC_Private_Variables * @{ */ static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9}; static __I uint8_t ADCPrescTable[4] = {2, 4, 6, 8}; /** * @} */ /** @defgroup RCC_Private_FunctionPrototypes * @{ */ /** * @} */ /** @defgroup RCC_Private_Functions * @{ */ /** * @brief Resets the RCC clock configuration to the default reset state. * @param None * @retval None */ void RCC_DeInit(void) { /* Set HSION bit */ RCC->CR |= (uint32_t)0x00000001; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #ifndef STM32F10X_CL RCC->CFGR &= (uint32_t)0xF8FF0000; #else RCC->CFGR &= (uint32_t)0xF0FF0000; #endif /* STM32F10X_CL */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= (uint32_t)0xFEF6FFFF; /* Reset HSEBYP bit */ RCC->CR &= (uint32_t)0xFFFBFFFF; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= (uint32_t)0xFF80FFFF; #ifdef STM32F10X_CL /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= (uint32_t)0xEBFFFFFF; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; #endif /* STM32F10X_CL */ } /** * @brief Configures the External High Speed oscillator (HSE). * @note HSE can not be stopped if it is used directly or through the PLL as system clock. * @param RCC_HSE: specifies the new state of the HSE. * This parameter can be one of the following values: * @arg RCC_HSE_OFF: HSE oscillator OFF * @arg RCC_HSE_ON: HSE oscillator ON * @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock * @retval None */ void RCC_HSEConfig(uint32_t RCC_HSE) { /* Check the parameters */ assert_param(IS_RCC_HSE(RCC_HSE)); /* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/ /* Reset HSEON bit */ RCC->CR &= CR_HSEON_Reset; /* Reset HSEBYP bit */ RCC->CR &= CR_HSEBYP_Reset; /* Configure HSE (RCC_HSE_OFF is already covered by the code section above) */ switch(RCC_HSE) { case RCC_HSE_ON: /* Set HSEON bit */ RCC->CR |= CR_HSEON_Set; break; case RCC_HSE_Bypass: /* Set HSEBYP and HSEON bits */ RCC->CR |= CR_HSEBYP_Set | CR_HSEON_Set; break; default: break; } } /** * @brief Waits for HSE start-up. * @param None * @retval An ErrorStatus enumuration value: * - SUCCESS: HSE oscillator is stable and ready to use * - ERROR: HSE oscillator not yet ready */ ErrorStatus RCC_WaitForHSEStartUp(void) { __IO uint32_t StartUpCounter = 0; ErrorStatus status = ERROR; FlagStatus HSEStatus = RESET; /* Wait till HSE is ready and if Time out is reached exit */ do { HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY); StartUpCounter++; } while((StartUpCounter != HSE_STARTUP_TIMEOUT) && (HSEStatus == RESET)); if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET) { status = SUCCESS; } else { status = ERROR; } return (status); } /** * @brief Adjusts the Internal High Speed oscillator (HSI) calibration value. * @param HSICalibrationValue: specifies the calibration trimming value. * This parameter must be a number between 0 and 0x1F. * @retval None */ void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_CALIBRATION_VALUE(HSICalibrationValue)); tmpreg = RCC->CR; /* Clear HSITRIM[4:0] bits */ tmpreg &= CR_HSITRIM_Mask; /* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */ tmpreg |= (uint32_t)HSICalibrationValue << 3; /* Store the new value */ RCC->CR = tmpreg; } /** * @brief Enables or disables the Internal High Speed oscillator (HSI). * @note HSI can not be stopped if it is used directly or through the PLL as system clock. * @param NewState: new state of the HSI. This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_HSICmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); *(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState; } /** * @brief Configures the PLL clock source and multiplication factor. * @note This function must be used only when the PLL is disabled. * @param RCC_PLLSource: specifies the PLL entry clock source. * For @b STM32_Connectivity_line_devices or @b STM32_Value_line_devices, * this parameter can be one of the following values: * @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock divided by 2 selected as PLL clock entry * @arg RCC_PLLSource_PREDIV1: PREDIV1 clock selected as PLL clock entry * For @b other_STM32_devices, this parameter can be one of the following values: * @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock divided by 2 selected as PLL clock entry * @arg RCC_PLLSource_HSE_Div1: HSE oscillator clock selected as PLL clock entry * @arg RCC_PLLSource_HSE_Div2: HSE oscillator clock divided by 2 selected as PLL clock entry * @param RCC_PLLMul: specifies the PLL multiplication factor. * For @b STM32_Connectivity_line_devices, this parameter can be RCC_PLLMul_x where x:{[4,9], 6_5} * For @b other_STM32_devices, this parameter can be RCC_PLLMul_x where x:[2,16] * @retval None */ void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLMul) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource)); assert_param(IS_RCC_PLL_MUL(RCC_PLLMul)); tmpreg = RCC->CFGR; /* Clear PLLSRC, PLLXTPRE and PLLMUL[3:0] bits */ tmpreg &= CFGR_PLL_Mask; /* Set the PLL configuration bits */ tmpreg |= RCC_PLLSource | RCC_PLLMul; /* Store the new value */ RCC->CFGR = tmpreg; } /** * @brief Enables or disables the PLL. * @note The PLL can not be disabled if it is used as system clock. * @param NewState: new state of the PLL. This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_PLLCmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); *(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState; } #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) || defined (STM32F10X_CL) /** * @brief Configures the PREDIV1 division factor. * @note * - This function must be used only when the PLL is disabled. * - This function applies only to STM32 Connectivity line and Value line * devices. * @param RCC_PREDIV1_Source: specifies the PREDIV1 clock source. * This parameter can be one of the following values: * @arg RCC_PREDIV1_Source_HSE: HSE selected as PREDIV1 clock * @arg RCC_PREDIV1_Source_PLL2: PLL2 selected as PREDIV1 clock * @note * For @b STM32_Value_line_devices this parameter is always RCC_PREDIV1_Source_HSE * @param RCC_PREDIV1_Div: specifies the PREDIV1 clock division factor. * This parameter can be RCC_PREDIV1_Divx where x:[1,16] * @retval None */ void RCC_PREDIV1Config(uint32_t RCC_PREDIV1_Source, uint32_t RCC_PREDIV1_Div) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_PREDIV1_SOURCE(RCC_PREDIV1_Source)); assert_param(IS_RCC_PREDIV1(RCC_PREDIV1_Div)); tmpreg = RCC->CFGR2; /* Clear PREDIV1[3:0] and PREDIV1SRC bits */ tmpreg &= ~(CFGR2_PREDIV1 | CFGR2_PREDIV1SRC); /* Set the PREDIV1 clock source and division factor */ tmpreg |= RCC_PREDIV1_Source | RCC_PREDIV1_Div ; /* Store the new value */ RCC->CFGR2 = tmpreg; } #endif #ifdef STM32F10X_CL /** * @brief Configures the PREDIV2 division factor. * @note * - This function must be used only when both PLL2 and PLL3 are disabled. * - This function applies only to STM32 Connectivity line devices. * @param RCC_PREDIV2_Div: specifies the PREDIV2 clock division factor. * This parameter can be RCC_PREDIV2_Divx where x:[1,16] * @retval None */ void RCC_PREDIV2Config(uint32_t RCC_PREDIV2_Div) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_PREDIV2(RCC_PREDIV2_Div)); tmpreg = RCC->CFGR2; /* Clear PREDIV2[3:0] bits */ tmpreg &= ~CFGR2_PREDIV2; /* Set the PREDIV2 division factor */ tmpreg |= RCC_PREDIV2_Div; /* Store the new value */ RCC->CFGR2 = tmpreg; } /** * @brief Configures the PLL2 multiplication factor. * @note * - This function must be used only when the PLL2 is disabled. * - This function applies only to STM32 Connectivity line devices. * @param RCC_PLL2Mul: specifies the PLL2 multiplication factor. * This parameter can be RCC_PLL2Mul_x where x:{[8,14], 16, 20} * @retval None */ void RCC_PLL2Config(uint32_t RCC_PLL2Mul) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_PLL2_MUL(RCC_PLL2Mul)); tmpreg = RCC->CFGR2; /* Clear PLL2Mul[3:0] bits */ tmpreg &= ~CFGR2_PLL2MUL; /* Set the PLL2 configuration bits */ tmpreg |= RCC_PLL2Mul; /* Store the new value */ RCC->CFGR2 = tmpreg; } /** * @brief Enables or disables the PLL2. * @note * - The PLL2 can not be disabled if it is used indirectly as system clock * (i.e. it is used as PLL clock entry that is used as System clock). * - This function applies only to STM32 Connectivity line devices. * @param NewState: new state of the PLL2. This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_PLL2Cmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); *(__IO uint32_t *) CR_PLL2ON_BB = (uint32_t)NewState; } /** * @brief Configures the PLL3 multiplication factor. * @note * - This function must be used only when the PLL3 is disabled. * - This function applies only to STM32 Connectivity line devices. * @param RCC_PLL3Mul: specifies the PLL3 multiplication factor. * This parameter can be RCC_PLL3Mul_x where x:{[8,14], 16, 20} * @retval None */ void RCC_PLL3Config(uint32_t RCC_PLL3Mul) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_PLL3_MUL(RCC_PLL3Mul)); tmpreg = RCC->CFGR2; /* Clear PLL3Mul[3:0] bits */ tmpreg &= ~CFGR2_PLL3MUL; /* Set the PLL3 configuration bits */ tmpreg |= RCC_PLL3Mul; /* Store the new value */ RCC->CFGR2 = tmpreg; } /** * @brief Enables or disables the PLL3. * @note This function applies only to STM32 Connectivity line devices. * @param NewState: new state of the PLL3. This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_PLL3Cmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); *(__IO uint32_t *) CR_PLL3ON_BB = (uint32_t)NewState; } #endif /* STM32F10X_CL */ /** * @brief Configures the system clock (SYSCLK). * @param RCC_SYSCLKSource: specifies the clock source used as system clock. * This parameter can be one of the following values: * @arg RCC_SYSCLKSource_HSI: HSI selected as system clock * @arg RCC_SYSCLKSource_HSE: HSE selected as system clock * @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock * @retval None */ void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource)); tmpreg = RCC->CFGR; /* Clear SW[1:0] bits */ tmpreg &= CFGR_SW_Mask; /* Set SW[1:0] bits according to RCC_SYSCLKSource value */ tmpreg |= RCC_SYSCLKSource; /* Store the new value */ RCC->CFGR = tmpreg; } /** * @brief Returns the clock source used as system clock. * @param None * @retval The clock source used as system clock. The returned value can * be one of the following: * - 0x00: HSI used as system clock * - 0x04: HSE used as system clock * - 0x08: PLL used as system clock */ uint8_t RCC_GetSYSCLKSource(void) { return ((uint8_t)(RCC->CFGR & CFGR_SWS_Mask)); } /** * @brief Configures the AHB clock (HCLK). * @param RCC_SYSCLK: defines the AHB clock divider. This clock is derived from * the system clock (SYSCLK). * This parameter can be one of the following values: * @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK * @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2 * @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4 * @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8 * @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16 * @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64 * @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128 * @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256 * @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512 * @retval None */ void RCC_HCLKConfig(uint32_t RCC_SYSCLK) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_HCLK(RCC_SYSCLK)); tmpreg = RCC->CFGR; /* Clear HPRE[3:0] bits */ tmpreg &= CFGR_HPRE_Reset_Mask; /* Set HPRE[3:0] bits according to RCC_SYSCLK value */ tmpreg |= RCC_SYSCLK; /* Store the new value */ RCC->CFGR = tmpreg; } /** * @brief Configures the Low Speed APB clock (PCLK1). * @param RCC_HCLK: defines the APB1 clock divider. This clock is derived from * the AHB clock (HCLK). * This parameter can be one of the following values: * @arg RCC_HCLK_Div1: APB1 clock = HCLK * @arg RCC_HCLK_Div2: APB1 clock = HCLK/2 * @arg RCC_HCLK_Div4: APB1 clock = HCLK/4 * @arg RCC_HCLK_Div8: APB1 clock = HCLK/8 * @arg RCC_HCLK_Div16: APB1 clock = HCLK/16 * @retval None */ void RCC_PCLK1Config(uint32_t RCC_HCLK) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_PCLK(RCC_HCLK)); tmpreg = RCC->CFGR; /* Clear PPRE1[2:0] bits */ tmpreg &= CFGR_PPRE1_Reset_Mask; /* Set PPRE1[2:0] bits according to RCC_HCLK value */ tmpreg |= RCC_HCLK; /* Store the new value */ RCC->CFGR = tmpreg; } /** * @brief Configures the High Speed APB clock (PCLK2). * @param RCC_HCLK: defines the APB2 clock divider. This clock is derived from * the AHB clock (HCLK). * This parameter can be one of the following values: * @arg RCC_HCLK_Div1: APB2 clock = HCLK * @arg RCC_HCLK_Div2: APB2 clock = HCLK/2 * @arg RCC_HCLK_Div4: APB2 clock = HCLK/4 * @arg RCC_HCLK_Div8: APB2 clock = HCLK/8 * @arg RCC_HCLK_Div16: APB2 clock = HCLK/16 * @retval None */ void RCC_PCLK2Config(uint32_t RCC_HCLK) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_PCLK(RCC_HCLK)); tmpreg = RCC->CFGR; /* Clear PPRE2[2:0] bits */ tmpreg &= CFGR_PPRE2_Reset_Mask; /* Set PPRE2[2:0] bits according to RCC_HCLK value */ tmpreg |= RCC_HCLK << 3; /* Store the new value */ RCC->CFGR = tmpreg; } /** * @brief Enables or disables the specified RCC interrupts. * @param RCC_IT: specifies the RCC interrupt sources to be enabled or disabled. * * For @b STM32_Connectivity_line_devices, this parameter can be any combination * of the following values * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: PLL ready interrupt * @arg RCC_IT_PLL2RDY: PLL2 ready interrupt * @arg RCC_IT_PLL3RDY: PLL3 ready interrupt * * For @b other_STM32_devices, this parameter can be any combination of the * following values * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: PLL ready interrupt * * @param NewState: new state of the specified RCC interrupts. * This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_RCC_IT(RCC_IT)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Perform Byte access to RCC_CIR bits to enable the selected interrupts */ *(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT; } else { /* Perform Byte access to RCC_CIR bits to disable the selected interrupts */ *(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT; } } #ifndef STM32F10X_CL /** * @brief Configures the USB clock (USBCLK). * @param RCC_USBCLKSource: specifies the USB clock source. This clock is * derived from the PLL output. * This parameter can be one of the following values: * @arg RCC_USBCLKSource_PLLCLK_1Div5: PLL clock divided by 1,5 selected as USB * clock source * @arg RCC_USBCLKSource_PLLCLK_Div1: PLL clock selected as USB clock source * @retval None */ void RCC_USBCLKConfig(uint32_t RCC_USBCLKSource) { /* Check the parameters */ assert_param(IS_RCC_USBCLK_SOURCE(RCC_USBCLKSource)); *(__IO uint32_t *) CFGR_USBPRE_BB = RCC_USBCLKSource; } #else /** * @brief Configures the USB OTG FS clock (OTGFSCLK). * This function applies only to STM32 Connectivity line devices. * @param RCC_OTGFSCLKSource: specifies the USB OTG FS clock source. * This clock is derived from the PLL output. * This parameter can be one of the following values: * @arg RCC_OTGFSCLKSource_PLLVCO_Div3: PLL VCO clock divided by 2 selected as USB OTG FS clock source * @arg RCC_OTGFSCLKSource_PLLVCO_Div2: PLL VCO clock divided by 2 selected as USB OTG FS clock source * @retval None */ void RCC_OTGFSCLKConfig(uint32_t RCC_OTGFSCLKSource) { /* Check the parameters */ assert_param(IS_RCC_OTGFSCLK_SOURCE(RCC_OTGFSCLKSource)); *(__IO uint32_t *) CFGR_OTGFSPRE_BB = RCC_OTGFSCLKSource; } #endif /* STM32F10X_CL */ /** * @brief Configures the ADC clock (ADCCLK). * @param RCC_PCLK2: defines the ADC clock divider. This clock is derived from * the APB2 clock (PCLK2). * This parameter can be one of the following values: * @arg RCC_PCLK2_Div2: ADC clock = PCLK2/2 * @arg RCC_PCLK2_Div4: ADC clock = PCLK2/4 * @arg RCC_PCLK2_Div6: ADC clock = PCLK2/6 * @arg RCC_PCLK2_Div8: ADC clock = PCLK2/8 * @retval None */ void RCC_ADCCLKConfig(uint32_t RCC_PCLK2) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_ADCCLK(RCC_PCLK2)); tmpreg = RCC->CFGR; /* Clear ADCPRE[1:0] bits */ tmpreg &= CFGR_ADCPRE_Reset_Mask; /* Set ADCPRE[1:0] bits according to RCC_PCLK2 value */ tmpreg |= RCC_PCLK2; /* Store the new value */ RCC->CFGR = tmpreg; } #ifdef STM32F10X_CL /** * @brief Configures the I2S2 clock source(I2S2CLK). * @note * - This function must be called before enabling I2S2 APB clock. * - This function applies only to STM32 Connectivity line devices. * @param RCC_I2S2CLKSource: specifies the I2S2 clock source. * This parameter can be one of the following values: * @arg RCC_I2S2CLKSource_SYSCLK: system clock selected as I2S2 clock entry * @arg RCC_I2S2CLKSource_PLL3_VCO: PLL3 VCO clock selected as I2S2 clock entry * @retval None */ void RCC_I2S2CLKConfig(uint32_t RCC_I2S2CLKSource) { /* Check the parameters */ assert_param(IS_RCC_I2S2CLK_SOURCE(RCC_I2S2CLKSource)); *(__IO uint32_t *) CFGR2_I2S2SRC_BB = RCC_I2S2CLKSource; } /** * @brief Configures the I2S3 clock source(I2S2CLK). * @note * - This function must be called before enabling I2S3 APB clock. * - This function applies only to STM32 Connectivity line devices. * @param RCC_I2S3CLKSource: specifies the I2S3 clock source. * This parameter can be one of the following values: * @arg RCC_I2S3CLKSource_SYSCLK: system clock selected as I2S3 clock entry * @arg RCC_I2S3CLKSource_PLL3_VCO: PLL3 VCO clock selected as I2S3 clock entry * @retval None */ void RCC_I2S3CLKConfig(uint32_t RCC_I2S3CLKSource) { /* Check the parameters */ assert_param(IS_RCC_I2S3CLK_SOURCE(RCC_I2S3CLKSource)); *(__IO uint32_t *) CFGR2_I2S3SRC_BB = RCC_I2S3CLKSource; } #endif /* STM32F10X_CL */ /** * @brief Configures the External Low Speed oscillator (LSE). * @param RCC_LSE: specifies the new state of the LSE. * This parameter can be one of the following values: * @arg RCC_LSE_OFF: LSE oscillator OFF * @arg RCC_LSE_ON: LSE oscillator ON * @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock * @retval None */ void RCC_LSEConfig(uint8_t RCC_LSE) { /* Check the parameters */ assert_param(IS_RCC_LSE(RCC_LSE)); /* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/ /* Reset LSEON bit */ *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF; /* Reset LSEBYP bit */ *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF; /* Configure LSE (RCC_LSE_OFF is already covered by the code section above) */ switch(RCC_LSE) { case RCC_LSE_ON: /* Set LSEON bit */ *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_ON; break; case RCC_LSE_Bypass: /* Set LSEBYP and LSEON bits */ *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_Bypass | RCC_LSE_ON; break; default: break; } } /** * @brief Enables or disables the Internal Low Speed oscillator (LSI). * @note LSI can not be disabled if the IWDG is running. * @param NewState: new state of the LSI. This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_LSICmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); *(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState; } /** * @brief Configures the RTC clock (RTCCLK). * @note Once the RTC clock is selected it can't be changed unless the Backup domain is reset. * @param RCC_RTCCLKSource: specifies the RTC clock source. * This parameter can be one of the following values: * @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock * @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock * @arg RCC_RTCCLKSource_HSE_Div128: HSE clock divided by 128 selected as RTC clock * @retval None */ void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource) { /* Check the parameters */ assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource)); /* Select the RTC clock source */ RCC->BDCR |= RCC_RTCCLKSource; } /** * @brief Enables or disables the RTC clock. * @note This function must be used only after the RTC clock was selected using the RCC_RTCCLKConfig function. * @param NewState: new state of the RTC clock. This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_RTCCLKCmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); *(__IO uint32_t *) BDCR_RTCEN_BB = (uint32_t)NewState; } /** * @brief Returns the frequencies of different on chip clocks. * @param RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold * the clocks frequencies. * @note The result of this function could be not correct when using * fractional value for HSE crystal. * @retval None */ void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks) { uint32_t tmp = 0, pllmull = 0, pllsource = 0, presc = 0; #ifdef STM32F10X_CL uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0; #endif /* STM32F10X_CL */ #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) uint32_t prediv1factor = 0; #endif /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & CFGR_SWS_Mask; switch (tmp) { case 0x00: /* HSI used as system clock */ RCC_Clocks->SYSCLK_Frequency = HSI_VALUE; break; case 0x04: /* HSE used as system clock */ RCC_Clocks->SYSCLK_Frequency = HSE_VALUE; break; case 0x08: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & CFGR_PLLMull_Mask; pllsource = RCC->CFGR & CFGR_PLLSRC_Mask; #ifndef STM32F10X_CL pllmull = ( pllmull >> 18) + 2; if (pllsource == 0x00) {/* HSI oscillator clock divided by 2 selected as PLL clock entry */ RCC_Clocks->SYSCLK_Frequency = (HSI_VALUE >> 1) * pllmull; } else { #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) prediv1factor = (RCC->CFGR2 & CFGR2_PREDIV1) + 1; /* HSE oscillator clock selected as PREDIV1 clock entry */ RCC_Clocks->SYSCLK_Frequency = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & CFGR_PLLXTPRE_Mask) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ RCC_Clocks->SYSCLK_Frequency = (HSE_VALUE >> 1) * pllmull; } else { RCC_Clocks->SYSCLK_Frequency = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18; if (pllmull != 0x0D) { pllmull += 2; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13 / 2; } if (pllsource == 0x00) {/* HSI oscillator clock divided by 2 selected as PLL clock entry */ RCC_Clocks->SYSCLK_Frequency = (HSI_VALUE >> 1) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & CFGR2_PREDIV1) + 1; if (prediv1source == 0) { /* HSE oscillator clock selected as PREDIV1 clock entry */ RCC_Clocks->SYSCLK_Frequency = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & CFGR2_PREDIV2) >> 4) + 1; pll2mull = ((RCC->CFGR2 & CFGR2_PLL2MUL) >> 8 ) + 2; RCC_Clocks->SYSCLK_Frequency = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F10X_CL */ break; default: RCC_Clocks->SYSCLK_Frequency = HSI_VALUE; break; } /* Compute HCLK, PCLK1, PCLK2 and ADCCLK clocks frequencies ----------------*/ /* Get HCLK prescaler */ tmp = RCC->CFGR & CFGR_HPRE_Set_Mask; tmp = tmp >> 4; presc = APBAHBPrescTable[tmp]; /* HCLK clock frequency */ RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc; /* Get PCLK1 prescaler */ tmp = RCC->CFGR & CFGR_PPRE1_Set_Mask; tmp = tmp >> 8; presc = APBAHBPrescTable[tmp]; /* PCLK1 clock frequency */ RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc; /* Get PCLK2 prescaler */ tmp = RCC->CFGR & CFGR_PPRE2_Set_Mask; tmp = tmp >> 11; presc = APBAHBPrescTable[tmp]; /* PCLK2 clock frequency */ RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc; /* Get ADCCLK prescaler */ tmp = RCC->CFGR & CFGR_ADCPRE_Set_Mask; tmp = tmp >> 14; presc = ADCPrescTable[tmp]; /* ADCCLK clock frequency */ RCC_Clocks->ADCCLK_Frequency = RCC_Clocks->PCLK2_Frequency / presc; } /** * @brief Enables or disables the AHB peripheral clock. * @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock. * * For @b STM32_Connectivity_line_devices, this parameter can be any combination * of the following values: * @arg RCC_AHBPeriph_DMA1 * @arg RCC_AHBPeriph_DMA2 * @arg RCC_AHBPeriph_SRAM * @arg RCC_AHBPeriph_FLITF * @arg RCC_AHBPeriph_CRC * @arg RCC_AHBPeriph_OTG_FS * @arg RCC_AHBPeriph_ETH_MAC * @arg RCC_AHBPeriph_ETH_MAC_Tx * @arg RCC_AHBPeriph_ETH_MAC_Rx * * For @b other_STM32_devices, this parameter can be any combination of the * following values: * @arg RCC_AHBPeriph_DMA1 * @arg RCC_AHBPeriph_DMA2 * @arg RCC_AHBPeriph_SRAM * @arg RCC_AHBPeriph_FLITF * @arg RCC_AHBPeriph_CRC * @arg RCC_AHBPeriph_FSMC * @arg RCC_AHBPeriph_SDIO * * @note SRAM and FLITF clock can be disabled only during sleep mode. * @param NewState: new state of the specified peripheral clock. * This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->AHBENR |= RCC_AHBPeriph; } else { RCC->AHBENR &= ~RCC_AHBPeriph; } } /** * @brief Enables or disables the High Speed APB (APB2) peripheral clock. * @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock. * This parameter can be any combination of the following values: * @arg RCC_APB2Periph_AFIO, RCC_APB2Periph_GPIOA, RCC_APB2Periph_GPIOB, * RCC_APB2Periph_GPIOC, RCC_APB2Periph_GPIOD, RCC_APB2Periph_GPIOE, * RCC_APB2Periph_GPIOF, RCC_APB2Periph_GPIOG, RCC_APB2Periph_ADC1, * RCC_APB2Periph_ADC2, RCC_APB2Periph_TIM1, RCC_APB2Periph_SPI1, * RCC_APB2Periph_TIM8, RCC_APB2Periph_USART1, RCC_APB2Periph_ADC3, * RCC_APB2Periph_TIM15, RCC_APB2Periph_TIM16, RCC_APB2Periph_TIM17, * RCC_APB2Periph_TIM9, RCC_APB2Periph_TIM10, RCC_APB2Periph_TIM11 * @param NewState: new state of the specified peripheral clock. * This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->APB2ENR |= RCC_APB2Periph; } else { RCC->APB2ENR &= ~RCC_APB2Periph; } } /** * @brief Enables or disables the Low Speed APB (APB1) peripheral clock. * @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock. * This parameter can be any combination of the following values: * @arg RCC_APB1Periph_TIM2, RCC_APB1Periph_TIM3, RCC_APB1Periph_TIM4, * RCC_APB1Periph_TIM5, RCC_APB1Periph_TIM6, RCC_APB1Periph_TIM7, * RCC_APB1Periph_WWDG, RCC_APB1Periph_SPI2, RCC_APB1Periph_SPI3, * RCC_APB1Periph_USART2, RCC_APB1Periph_USART3, RCC_APB1Periph_USART4, * RCC_APB1Periph_USART5, RCC_APB1Periph_I2C1, RCC_APB1Periph_I2C2, * RCC_APB1Periph_USB, RCC_APB1Periph_CAN1, RCC_APB1Periph_BKP, * RCC_APB1Periph_PWR, RCC_APB1Periph_DAC, RCC_APB1Periph_CEC, * RCC_APB1Periph_TIM12, RCC_APB1Periph_TIM13, RCC_APB1Periph_TIM14 * @param NewState: new state of the specified peripheral clock. * This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->APB1ENR |= RCC_APB1Periph; } else { RCC->APB1ENR &= ~RCC_APB1Periph; } } #ifdef STM32F10X_CL /** * @brief Forces or releases AHB peripheral reset. * @note This function applies only to STM32 Connectivity line devices. * @param RCC_AHBPeriph: specifies the AHB peripheral to reset. * This parameter can be any combination of the following values: * @arg RCC_AHBPeriph_OTG_FS * @arg RCC_AHBPeriph_ETH_MAC * @param NewState: new state of the specified peripheral reset. * This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_RCC_AHB_PERIPH_RESET(RCC_AHBPeriph)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->AHBRSTR |= RCC_AHBPeriph; } else { RCC->AHBRSTR &= ~RCC_AHBPeriph; } } #endif /* STM32F10X_CL */ /** * @brief Forces or releases High Speed APB (APB2) peripheral reset. * @param RCC_APB2Periph: specifies the APB2 peripheral to reset. * This parameter can be any combination of the following values: * @arg RCC_APB2Periph_AFIO, RCC_APB2Periph_GPIOA, RCC_APB2Periph_GPIOB, * RCC_APB2Periph_GPIOC, RCC_APB2Periph_GPIOD, RCC_APB2Periph_GPIOE, * RCC_APB2Periph_GPIOF, RCC_APB2Periph_GPIOG, RCC_APB2Periph_ADC1, * RCC_APB2Periph_ADC2, RCC_APB2Periph_TIM1, RCC_APB2Periph_SPI1, * RCC_APB2Periph_TIM8, RCC_APB2Periph_USART1, RCC_APB2Periph_ADC3, * RCC_APB2Periph_TIM15, RCC_APB2Periph_TIM16, RCC_APB2Periph_TIM17, * RCC_APB2Periph_TIM9, RCC_APB2Periph_TIM10, RCC_APB2Periph_TIM11 * @param NewState: new state of the specified peripheral reset. * This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->APB2RSTR |= RCC_APB2Periph; } else { RCC->APB2RSTR &= ~RCC_APB2Periph; } } /** * @brief Forces or releases Low Speed APB (APB1) peripheral reset. * @param RCC_APB1Periph: specifies the APB1 peripheral to reset. * This parameter can be any combination of the following values: * @arg RCC_APB1Periph_TIM2, RCC_APB1Periph_TIM3, RCC_APB1Periph_TIM4, * RCC_APB1Periph_TIM5, RCC_APB1Periph_TIM6, RCC_APB1Periph_TIM7, * RCC_APB1Periph_WWDG, RCC_APB1Periph_SPI2, RCC_APB1Periph_SPI3, * RCC_APB1Periph_USART2, RCC_APB1Periph_USART3, RCC_APB1Periph_USART4, * RCC_APB1Periph_USART5, RCC_APB1Periph_I2C1, RCC_APB1Periph_I2C2, * RCC_APB1Periph_USB, RCC_APB1Periph_CAN1, RCC_APB1Periph_BKP, * RCC_APB1Periph_PWR, RCC_APB1Periph_DAC, RCC_APB1Periph_CEC, * RCC_APB1Periph_TIM12, RCC_APB1Periph_TIM13, RCC_APB1Periph_TIM14 * @param NewState: new state of the specified peripheral clock. * This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->APB1RSTR |= RCC_APB1Periph; } else { RCC->APB1RSTR &= ~RCC_APB1Periph; } } /** * @brief Forces or releases the Backup domain reset. * @param NewState: new state of the Backup domain reset. * This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_BackupResetCmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); *(__IO uint32_t *) BDCR_BDRST_BB = (uint32_t)NewState; } /** * @brief Enables or disables the Clock Security System. * @param NewState: new state of the Clock Security System.. * This parameter can be: ENABLE or DISABLE. * @retval None */ void RCC_ClockSecuritySystemCmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); *(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState; } /** * @brief Selects the clock source to output on MCO pin. * @param RCC_MCO: specifies the clock source to output. * * For @b STM32_Connectivity_line_devices, this parameter can be one of the * following values: * @arg RCC_MCO_NoClock: No clock selected * @arg RCC_MCO_SYSCLK: System clock selected * @arg RCC_MCO_HSI: HSI oscillator clock selected * @arg RCC_MCO_HSE: HSE oscillator clock selected * @arg RCC_MCO_PLLCLK_Div2: PLL clock divided by 2 selected * @arg RCC_MCO_PLL2CLK: PLL2 clock selected * @arg RCC_MCO_PLL3CLK_Div2: PLL3 clock divided by 2 selected * @arg RCC_MCO_XT1: External 3-25 MHz oscillator clock selected * @arg RCC_MCO_PLL3CLK: PLL3 clock selected * * For @b other_STM32_devices, this parameter can be one of the following values: * @arg RCC_MCO_NoClock: No clock selected * @arg RCC_MCO_SYSCLK: System clock selected * @arg RCC_MCO_HSI: HSI oscillator clock selected * @arg RCC_MCO_HSE: HSE oscillator clock selected * @arg RCC_MCO_PLLCLK_Div2: PLL clock divided by 2 selected * * @retval None */ void RCC_MCOConfig(uint8_t RCC_MCO) { /* Check the parameters */ assert_param(IS_RCC_MCO(RCC_MCO)); /* Perform Byte access to MCO bits to select the MCO source */ *(__IO uint8_t *) CFGR_BYTE4_ADDRESS = RCC_MCO; } /** * @brief Checks whether the specified RCC flag is set or not. * @param RCC_FLAG: specifies the flag to check. * * For @b STM32_Connectivity_line_devices, this parameter can be one of the * following values: * @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready * @arg RCC_FLAG_HSERDY: HSE oscillator clock ready * @arg RCC_FLAG_PLLRDY: PLL clock ready * @arg RCC_FLAG_PLL2RDY: PLL2 clock ready * @arg RCC_FLAG_PLL3RDY: PLL3 clock ready * @arg RCC_FLAG_LSERDY: LSE oscillator clock ready * @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready * @arg RCC_FLAG_PINRST: Pin reset * @arg RCC_FLAG_PORRST: POR/PDR reset * @arg RCC_FLAG_SFTRST: Software reset * @arg RCC_FLAG_IWDGRST: Independent Watchdog reset * @arg RCC_FLAG_WWDGRST: Window Watchdog reset * @arg RCC_FLAG_LPWRRST: Low Power reset * * For @b other_STM32_devices, this parameter can be one of the following values: * @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready * @arg RCC_FLAG_HSERDY: HSE oscillator clock ready * @arg RCC_FLAG_PLLRDY: PLL clock ready * @arg RCC_FLAG_LSERDY: LSE oscillator clock ready * @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready * @arg RCC_FLAG_PINRST: Pin reset * @arg RCC_FLAG_PORRST: POR/PDR reset * @arg RCC_FLAG_SFTRST: Software reset * @arg RCC_FLAG_IWDGRST: Independent Watchdog reset * @arg RCC_FLAG_WWDGRST: Window Watchdog reset * @arg RCC_FLAG_LPWRRST: Low Power reset * * @retval The new state of RCC_FLAG (SET or RESET). */ FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG) { uint32_t tmp = 0; uint32_t statusreg = 0; FlagStatus bitstatus = RESET; /* Check the parameters */ assert_param(IS_RCC_FLAG(RCC_FLAG)); /* Get the RCC register index */ tmp = RCC_FLAG >> 5; if (tmp == 1) /* The flag to check is in CR register */ { statusreg = RCC->CR; } else if (tmp == 2) /* The flag to check is in BDCR register */ { statusreg = RCC->BDCR; } else /* The flag to check is in CSR register */ { statusreg = RCC->CSR; } /* Get the flag position */ tmp = RCC_FLAG & FLAG_Mask; if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET) { bitstatus = SET; } else { bitstatus = RESET; } /* Return the flag status */ return bitstatus; } /** * @brief Clears the RCC reset flags. * @note The reset flags are: RCC_FLAG_PINRST, RCC_FLAG_PORRST, RCC_FLAG_SFTRST, * RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST * @param None * @retval None */ void RCC_ClearFlag(void) { /* Set RMVF bit to clear the reset flags */ RCC->CSR |= CSR_RMVF_Set; } /** * @brief Checks whether the specified RCC interrupt has occurred or not. * @param RCC_IT: specifies the RCC interrupt source to check. * * For @b STM32_Connectivity_line_devices, this parameter can be one of the * following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: PLL ready interrupt * @arg RCC_IT_PLL2RDY: PLL2 ready interrupt * @arg RCC_IT_PLL3RDY: PLL3 ready interrupt * @arg RCC_IT_CSS: Clock Security System interrupt * * For @b other_STM32_devices, this parameter can be one of the following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: PLL ready interrupt * @arg RCC_IT_CSS: Clock Security System interrupt * * @retval The new state of RCC_IT (SET or RESET). */ ITStatus RCC_GetITStatus(uint8_t RCC_IT) { ITStatus bitstatus = RESET; /* Check the parameters */ assert_param(IS_RCC_GET_IT(RCC_IT)); /* Check the status of the specified RCC interrupt */ if ((RCC->CIR & RCC_IT) != (uint32_t)RESET) { bitstatus = SET; } else { bitstatus = RESET; } /* Return the RCC_IT status */ return bitstatus; } /** * @brief Clears the RCC's interrupt pending bits. * @param RCC_IT: specifies the interrupt pending bit to clear. * * For @b STM32_Connectivity_line_devices, this parameter can be any combination * of the following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: PLL ready interrupt * @arg RCC_IT_PLL2RDY: PLL2 ready interrupt * @arg RCC_IT_PLL3RDY: PLL3 ready interrupt * @arg RCC_IT_CSS: Clock Security System interrupt * * For @b other_STM32_devices, this parameter can be any combination of the * following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: PLL ready interrupt * * @arg RCC_IT_CSS: Clock Security System interrupt * @retval None */ void RCC_ClearITPendingBit(uint8_t RCC_IT) { /* Check the parameters */ assert_param(IS_RCC_CLEAR_IT(RCC_IT)); /* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt pending bits */ *(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT; } /** * @} */ /** * @} */ /** * @} */ /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/